Is a virialized CGM required for
the formation of thin galactic discs?
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In SF galaxies, rotating thin discs dominate at high masses and late times. Why?
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Could CGM ‘virialization’ (Rees, Ostriker, White, Silk, Dekel, Birnboim, ...)
be required for the formation of thin star-forming disks?
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— free-falling CGM — quasi-static CGM




Recent updates to CGM virialization theory



The effect of (stellar) feedback on CGM virialization
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tfransition from with transient hot phase to
(Fielding+2017, see also van de Voort +2016)



Radial dependence of CGM virialization
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.and a CGM regime:

Stern+2020

free-fall quasi-static
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Are these three CGM regimes
realized in cosmological simulations?
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Stern et al. (2021)
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M (z=0)=1e12, Stern+ 2021



Hafen, Stern, et al., in prep.
color: A(spatial aligned accretion)
@® hydro+
B no metal diffusion

thin disk galaxies have
virialized inner CGM
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Why would the virialization of the inner CGM
Initiate disk settling?
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low pressure channels prior to virialization disk confined by ~uniform pressure

M, (z=0)=1e12, Stern+ 2021 (cf. Bower+2017)
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Summary

1. CGM regimes: free-fall, , quasi-static

« /

‘Inner CGM virialization’

2. Inner CGM virialization
o galaxy outflows
o in galaxy inflows

3. InFIRE,
, sSupporting a scenario where they are causally linked



