Is a virialized CGM required for the formation of thin galactic discs? (main paper: Stern+ 2021, ApJ, 911, 88)

Jonathan Stern (Tel Aviv)

Drummond Fielding, Claude-André Faucher-Giguère, Zach Hafen, Alex Gurvich, Sijie Yu, Eliot Quataert, James Bullock, + *FIRE* team In SF galaxies, rotating thin discs dominate at high masses and late times. <u>Why?</u>

morphology

kinematics

<u>Alex's talk:</u> in FIRE, *disc settling* simultaneous with transition from bursty to steady star formation. What drives these transitions?

Could CGM 'virialization' (Rees, Ostriker, White, Silk, Dekel, Birnboim, ...) be required for the formation of thin star-forming disks?

 $M_{halo} < 10^{11} - 10^{12} M_{\odot}$ rapid cooling of hot gas ($t_{cool} < t_{ff}$)

 \rightarrow free-falling CGM

 $M_{halo} > 10^{11} - 10^{12} M_{\odot}$ slow cooling of hot gas ($t_{cool} > t_{ff}$)

 \rightarrow quasi-static CGM

<u>qualitative</u> change in galaxy inflows and outflows

Recent updates to CGM virialization theory

The effect of (stellar) feedback on CGM virialization

$$M_{\rm h} = 10^{11} \, M_{\odot}, \, t_{\rm cool} < t_{\rm ff}$$

 $M_{\rm b} = 10^{12} M_{\odot}, \ t_{\rm cool} > t_{\rm ff}$

Fielding +2017

transition from dynamic CGM with transient hot phase to time-steady, quasi-static hot phase (Fielding+2017, see also van de Voort +2016)

Radial dependence of CGM virialization

Are these three CGM regimes realized in cosmological simulations?

 $10^3 10^4 10^5 10^6$ temperature [K]

Stern et al. (2021)

Transition from transonic to quasi-static CGM ('Inner CGM Virialization')

*M*_b(z=0)=1e12, Stern+ 2021

Hafen, **Stern**, et al., in prep.

strong relation between stellar kinematics and CGM thermal properties

Why would the virialization of the inner CGM initiate disk settling?

Inner CGM virialization confines galaxy outflows

low pressure channels prior to virialization

disk confined by ~uniform pressure

*M*_h(*z*=0)=1e12, Stern+ 2021 (cf. Bower+2017)

Inner CGM virialization leads to spin-aligned accretion

Hafen, **Stern**, et al., in prep.

1. *Three* CGM regimes: free-fall, *transonic*, quasi-static

'Inner CGM virialization'

- 2. Inner CGM virialization
 - confines galaxy outflows
 - narrows angular momentum distribution in galaxy inflows

3. In FIRE, *formation of thin SF disks* simultaneous with inner CGM virialization, supporting a scenario where they are causally linked